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Using Monte Carlo techniques on a four-dimensional space-time lattice, we study SU( N ) / Z  N 
gauge theories for N = 3, 4, 5 and 6. We find first-order phase transitions at critical inverse 
temperatures of tic = 6.40, 12.0, 19.5 and 32.0 for SU(3)/Z3, SU(4)/Z4, SU(5)//Z5 and SU(6)/Z6, 
respectively. 

It was long felt that non-abelian lattice gauge theories in four space-time dimen- 
sions would exhibit no phase transitions separating the high- and low-temperature 
domains. However, first-order phase transitions have been found in SU(4) [1,2], 
SU(5) [1, 3], SU(6) [4] and 0(3) = SU(2) /Z  2 [5]. We wish to continue this search for 
phase transitions to SU(N)  in the adjoint representation with N = 3, 4, 5 and 6. As 
the center of the group is removed with adjoint representations, we refer to these 
models as S U ( N ) / Z  u theories. The center of a gauge group is often invoked as 
crucial to the confinement mechanism [5, 6]. Thus, it is interesting to study the effect 
of its removal. We shall see that these gauge groups also exhibit first-order phase 
transitions. This suggests that phase transitions for non-abelian gauge groups, using 
Wilson's form of the action, are the rule rather than the exception. In fact, phase 
transitions are only absent for the gauge groups SU(2) [7] and SU(3) [8]. 

We study Wilson's formulation [9] of gauge theory. We form a hypercubical 
euclidean lattice in four space-time dimensions and join nearest neighbor sites i a n d j  
by the link (i, j). With each link we associate a matrix Uq which is an element of the 
gauge group SU(N).  The partition function is given by 

The normalized invariant Haar  measure for the group is the measure in the above 
integral. In Wilson's formulation, the action S is a function of ordered products of 
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link matrices LID around the plaquettes [] in the lattice giving 

1 S [ U ] = ~ S D = ~ ( 1 - - ~ R e T r U r j ) .  

Here the inverse temperature fl is related to the bare coupling constant go by 
fl = 2 U/g 2. 

We wish to modify this action by replacing the trace in this equation with the 
trace in the adjoint representation. Thus we take 

1 
S D = 1 ( U 2 _ 1) TrAUD' 

where Tr A denotes the trace of the corresponding adjoint matrix. The normalization 
is chosen so that the expectation value of S[] 

1 
( E )  = ( 1  ( N 2 _  1)TrAU @ 

runs between one and zero as fl increases from 0 to infinity. With the modified 
action, the connection between bare coupling and fl becomes 

N 2 -  1 
B Ngg 

We establish [9] the relationship between the characters of the adjoint and the 
fundamental representations of SU(N) as follows. The character Xi (g)=  TrDi(g)  
of a representation i satisfies the following composition laws: If i is reducible and 
i = j  ~9 k then 

x,(g)=xj(g)+x,(g). 

If i is a Kronecker product i = j  ® k then 

xi(g) = x j ( g ) ' x k ( g ) ,  

which is merely the multiplication of complex numbers. The relation 

TrDA(g)  = ITrDF(g)I 2 - 

then follows from this because 

F ® F = A ~ I ,  

1, (1) 

for SU(N). Here F represents the fundamental representation, F represents its 
complex conjugate, 1 represents the trivial 1-dimensional representation and A 
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represents the adjoint representation. The adjoint trace for any SU(N) is found 
using the identity of eq. (1). 

We equilibrated our lattice by the method of Metropolis et al. [11], described for 
lattice gauge theory in ref. [1]. Periodic boundary conditions were used throughout 
our calculation. 

The leading-order high-temperature expansion is given by 

(E>  = 1 /3 F O(/~2), (2) 
( N 2 -  1) 2 

while the leading-order low-temperature expansion is the same as in the Wilson 
model 

N 2 - I  
( E )  4 - ~  + O(f l -2)"  (3) 

Figs. l a - d  show the average action per plaquette for SU(3)/Z 3, S U ( 4 ) / Z 4 ,  

SU(5)/Z 5 and SU(6)/Z 6, respectively, on a 4 4 lattice as a function of the inverse 
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Fig. l. The average action per plaquette ( E )  for (a) SU(3)/Z 3, (b) SU(4) /Z 4, (c) SU(5)/Z 5 and (d) 
SU(6) /Z  6 on a 44 lattice as a function of the inverse temperature/3. The full circles represent the unique 
value to which ordered and disordered starts converge, the crosses and open circles represent the average 
over the last 20 of 100 iterations through the lattice for ordered and disordered starts, respectively. The 
curves represent the leading-order high- and low-temperature expansions of eqs. (2) and (3), respectively. 
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Fig. I (continued) 

temperature ft. All the data points result from 100 Monte Carlo iterations through 
the lattice with the last 20 iterations averaged over. As we pass through the lattice, 
each iteration consists of 20 Monte Carlo upgrades per link. In the high-temperature 
region, the disordered and ordered starting lattice runs converged to one another in 
less than 100 iterations. In the low-temperature region, the disordered and ordered 
starting lattice runs did not converge to one another, probably because the Monte 
Carlo algorithm has not been adequately optimized. Hysteresis loops clearly develop 
in each diagram. However, it is quite impossible to accurately estimate the critical 
inverse temperatures from these diagrams. 

From fig. 1 we can see that the high-temperature expansion of eq. (1) nicely 
approaches the Monte Carlo data at small /3. We can also see that the ordered 
starting lattice data converges on the leading-order low-temperature expansion 
relatively well. With more optimization of our Monte Carlo algorithm, the dis- 
ordered starting lattice data should also agree with the low-temperature expansion. 

We show in figs. 2a-d  the average action per plaquette as a function of the Monte 
Carlo iterations for the SU(3) /Z  3, S U ( 4 ) / Z 4 ,  S U ( 5 ) / Z  5 and S U ( 6 ) / Z  6 gauge 
groups, respectively, on  44 lattices for both disordered and ordered starts. Figs. 2a-c  
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Fig. 2. The evolution of the disordered and ordered configurations for the average action per plaquette 
for (a) SU(3)/Z 3, (b) SU(4)/Z 4, SU(5)/Z 5 and (d) SU(6)/Z 6 for a 44 |attice near the appropriate critical 

inverse temperature. 
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Fig. 3. The evolution of the disordered and ordered configurations for the average action pet  plaquette 
for SU(3) /Z]  for a 44 lattice at various values of the inverse temperature for/3 = (a) 5.60, (b) 5.90, (c) 

6.65 and (d) 6.80. 
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correspond to 500 iterations while fig. 2d corresponds to 300 iterations through the 
lattice in the hysteresis loop for the appropriate gauge group. The temperatures were 
chosen near the transition as estimated below. In the vicinity of the critical inverse 
temperature the relaxation time for the lattice is very long. 

Fig. 3 shows the average action per plaquette as a function of the Monte Carlo 
iterations for the S U ( 3 ) / Z  3 gauge theory on a 44 lattice for both disordered and 
ordered starts for various values of the inverse temperature on either side of the 
critical inverse temperature. For/3 = 5.60 (fig. 3a), the disordered and ordered starts 
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Fig. 4. The evolut ion o f  the mixed phase  configurations for the average act ion per  plaquette  for (a) 
SU(3) /Z  3, (b) SU(4) /Z4,  (c) SU(5)/Z5 and (d) SU(6) /Z  6 for a 4 4 lattice at various values of  the inverse 

temperature.  
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Fig. 4. (continued) 

converge to a unique value after approximately 230 iterations. Fig. 3 shows how 
difficult it is to calculate the critical inverse temperature solely from observing the 
evolution of disordered and ordered starts at fixed values of the inverse temperature 

ft. Similar convergence properties are found for SU(4)/Z4, SU(5)/Z5, and SU(6)/Z 6. 
Note, however, the strong evidence for superheating and supercooling in figs. 3b and 
3c, respectively. 

To determine the critical temperatures more precisely we studied mixed initial 
conditions as described in ref. [12]. All links were first randomized, and then those 
with time coordinates less than half the total lattice length were refrozen to the 
identity. Thus either above or below the transition temperature we always have a 
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seed for the growth of the stable phase. In  figs. 4 a - d  we show the evolution of  the 
mixed phase starting lattice runs for various values of  the inverse temperature fl in 

the region of  the hysteresis loops for SU(3) /Z3,  S U ( 4 ) / Z  4, S U ( 5 ) / Z  5 and SU(6)//Z6, 
respectively. On either side of the critical inverse temperature, there is a rapid initial 

relaxation of  the system to a definite value of the average action per plaquette, while 
at the critical inverse temperature there are two phases which can coexist and there is 
only a meandering drift in the average action per plaquette. Using these diagrams, 

we estimate the critical inverse temperatures to be tic = 6.40 _+ 0.10, 12.00 _+ 0.35, 

19.5 _+ 1.1 and 32.0 + 1.0 for SU(3) /Z3 ,  SU(4) /Z4 ,  S U ( 5 ) / Z  5 and SU(6) /Z6,  re- 
spectively. Cvitanovic et al. [13] used mean field theory to predict  that  the critical 

inverse temperatures for S U ( 3 ) / Z  3, SU(4)//Z4, SU(5)//Z5 and S U ( 6 ) / Z  6 would be 
/3 c = 6.78, 12.40, 20.3 and 29.6, respectively. These results are in reasonable agree- 
ment  with our values. 

F rom the present calculations we see that S U ( N ) / Z  u ,  N = 3, 4, 5 and 6, all have 
first-order phase transitions. Previously, it was shown [5] that S U ( 2 ) / Z  2 also has a 
first-order phase transition. Thus, it appears that the adjoint representations of  
S U ( N )  and U ( N )  exhibit first-order phase transitions for all N larger than unity. 
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